Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1
نویسندگان
چکیده
The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5'end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5'end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins.
منابع مشابه
Structural basis for the activation of the C. elegans noncanonical cytoplasmic poly(A)-polymerase GLD-2 by GLD-3.
The Caenorhabditis elegans germ-line development defective (GLD)-2-GLD-3 complex up-regulates the expression of genes required for meiotic progression. GLD-2-GLD-3 acts by extending the short poly(A) tail of germ-line-specific mRNAs, switching them from a dormant state into a translationally active state. GLD-2 is a cytoplasmic noncanonical poly(A) polymerase that lacks the RNA-binding domain t...
متن کاملSolution Structure of the QUA1 Dimerization Domain of pXqua, the Xenopus Ortholog of Quaking
The STAR protein family member Quaking is essential for early development in vertebrates. For example, in oligodendrocyte cells it regulates the splicing, localization, translation and lifetime of a set of mRNAs that code for crucial components of myelin. The Quaking protein contains three contiguous conserved regions: a QUA1 oligomerization element, followed by a single-stranded RNA binding mo...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملStructural analysis of the quaking homodimerization interface.
Quaking (QkI) is a prototypical member of the STAR (signal transducer and activator of RNA) protein family, which plays key roles in posttranscriptional gene regulation by controlling mRNA translation, stability and splicing. QkI-5 has been shown to regulate mRNA expression in the central nervous system, but little is known about its roles in other tissues. STAR proteins function as dimers and ...
متن کامل